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Error estimation in the Monte Carlo method for calculating solar radiances;
Illustration with cloud models based on Landsat measurements

A. Marshak (UMBC), A. B. Davis (LANL), L. Oreopoulos (UMBC), T. Várnai (UMBC)

In this paper, we first highlight the general concept of Monte Carlo (MC) error
estimation based on well-known formulae from the theory of large numbers (e.g.,
Papoulis, 1965; p. 149).  Next, we briefly describe the methods of local estimates and
maximum cross sections used for calculating zenith and nadir radiances (Marchuk, 1980).
Finally,  simulated radiances with associated errors are illustrated and discussed using the
Intercomparison of 3D Radiation Codes (I3RC) Case 3 cloud model based on Landsat
measurements.

General concept of MC error estimate

Let us assume that we obtained N independent realizations ξi  (i=1, …, N) of a
random value ξ with finite mathematical expectation Eξ and variance Dξ.  If N is large
enough, then the average of ξ is has a normal distribution and the inequality

|Eξ – 
1
N

 ∑
i=1

N
  ξi| ≤ cβ √Dξ/N (1)

is valid at a given confidence level β which defines the constant cβ.  For example,
cβ=0.67 if β = 0.5, cβ=1.0 if β = 0.68 (the “1-sigma” value), cβ=1.96 if β = 0.95, and cβ=3
if β = 0.997 (the famous rule of “3 sigmas”).  More precisely,

Prob{ |Eξ – 
1
N

 ∑
i=1

N
  ξi| < c √ Dξ

N
}  ≈ Φ(c) = 2

√2π
 ∫
0

c

 exp(-t2/2)dt (2)

and c
β
 is the solution of the equation,

Φ(c) = β. (3)

The variance Dξ can be estimated as

Dξ ≈ 
N

N–1
 {  

1
N

 ∑
i=1

N
  ξi

2 – [1
N

 ∑
i=1

N
  ξi]2}. (4)

To conclude, based on (1), √Dξ/N is an estimate of MC uncertainties with a

confidence level β = 0.68.  This means that after N trials, with 68% probability, the MC

estimate, (1/N)∑
i=1

N
 ξ i , will have an error smaller than √Dξ/N where variance Dξ is

estimated using Eq. (4).

Calculations of nadir and zenith radiances as a local estimate

The upward or downward radiances I j for each cell Sj on a horizontal grid, can be
estimated by the flux of radiant energy across:

• the upper boundary of  Sj (at z = h) in the zenith direction (Ω+), or

• the lower boundary of  Sj (at z = 0) in the nadir direction (Ω−),
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Ij (Ω±) = ∫
Sj 

 I(x;Ω±) dx  / ∫
Sj 

  dx  = E[ξj(Ω±)] ≈ 
1
N

 ∑
i=1

N

 ξj i(Ω±). (5)

Here ξ j i   ( i = 1,...,N) are N independent realizations (photon trajectories) of a random
function ξ j.  For each realization (a trajectory), the random value ξ j(Ω ±) is the
contribution to the grid-point Sj into the direction Ω± from all orders of scattering:

ξj (Ω±) = ∑
k=1

m

 ϖ0k P(Ωk•Ω±) χ j(k) 

 

  exp[–σj (h–zk)], zenith (+)

 exp[–σj zk], nadir  (−)
, (6)

m is the (random) last scattering order of the photon trajectory, P(Ω•Ω’ ) is the scattering
phase function; ϖ0 is the single scattering albedo, σj is the extinction of the grid-point Sj,
rk = (xk,yk,zk) are the coordinates of the point of photon’s kth scattering, Ωk is its direction
of propagation before this scattering event, and finally, χj(k) indicates whether the photon
was in cell Sj  or not at its kth scattering:

χ j(k) = 
 

  1, if (xkyk) ∈ Sj 
 0, otherwise

. (7)

Photon trajectories, points rk, are calculated using phase function P(Ω•Ω’) for the
direction of travel and the maximum cross-section method with a new (but constant!)
extinction

σmax = maxr [σ(r)]. (8)

for a photon’s free path.  Hence, the length of photon step l is simulated using probability
density function

p(x) = σmax exp(–σmax x); (9)

thus
l = –ln α /σmax, (10)

where α is a random number uniformly distributed on (0,1].

The uncertainties in simulation (5) are estimated similar to those described in (1)-
(3) where variance D[ξj(Ω±)] is calculated as described in Eq. (4).  In other words, in
addition to the first moment we also accumulate the second moment.  In practice, it is
more efficient to calculate the second moment not after each photon but after a package
of photons.  Some ideas on “packaging” photons can be found in Marchuk et al. (1980).

Maximum cross-section method

The idea of the maximum cross-section method is simple (Marchuk et al., 1980,
p. 9):  the traditional 3D radiative transfer equation is identical to the following equation,

Ω•∇ I(r ;Ω) + σmaxI(r ;Ω) = σmax ∫
4π

 [
σ(r)

σmax
 ϖ0P(Ω•Ω’) + (1− 

σ(r)

σmax
)δ(Ω−Ω’)]  I(r ;Ω’ ) dΩ’

(11)

where δ is the Dirac delta function.  The above equation can be interpreted as the
transport equation with constant extinction and a modified phase function equal to

 

  ϖ0P(Ω•Ω’),  with probability σ(r)/σmax  (this is a “physical” scattering)

 δ(Ω−Ω’),  otherwise  (this is a “mathematical” scattering)
. (12)
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Radiance uncertainties for the cloud fields retrieved from Landsat data.

In this section we illustrate the above theory with examples from the Case 3 of the
I3RC (see http://climate.gsfc.nasa.gov/I3RC/).  This case represents a marine boundary-
layer cloud retrieved from Landsat.

The MC code used in the I3RC had been developed at Goddard’s Climate and
Radiation Branch; it was originated by G. Titov and A. Marshak and then further
modified by all co-authors.  The code is based on the MC solution of the monochromatic
3D radiative transfer equation for a given 3D extinction field and any surface reflective
properties.  The code simultaneously calculates downward/upward fluxes and cloud
absorption, as well as radiances in any given direction using the methods of maximum
cross-section and local estimate described above.  For the Landsat case (128x128 pixels
or 3.8x3.8 km), the code was run on SGI Origin 200 machine (180 MHz, SPECfp_base
95 = 14.5).  The processing rate for the simulation was 4-5 103 photons per 1 sec or 15-20
106 photons per 1 h.

Figure 1 shows zenith (downward) radiances calculated with 108 and 109 photons,
respectively, for solar zenith angle (SZA) of 60o.  It is clearly seen that the lower image
(with 109 photons) has much smaller noise than the upper one.  The majority of pixels in
the lower image have an error around 1%.  The errors at the boundary are much larger
and often exceed 5 and 10%.  (This will be discussed in more detail in Fig. 3.)  What is of
interest is that, if we did not have colorbars for the rightmost panels, the two images of
relative errors would be statistically indistinguishable.  Indeed, it follows directly from
Eq. (2) that the increase of number of independent realizations by 10 will decrease MC
noise by √10 ≈ 3.2.  This is approximately [but not exactly, because, in general, Dξ =
Dξ(N) from Eq. (4)] what we see if we compare the two colorbars.

Figure 2 illustrates nadir (upward) radiances for the same SZA = 60o.  In addition
to relative errors (two middle panels), we show absolute errors for both 108 and 109
photons.  We see that while the relative errors for most pixels are slightly less that 1%
(for 109 photons), the absolute errors are about 0.005.  (As explained above, this means
that with about 70% probability, the second decimal of our pixel-by-pixel nadir radiances
results is either correct or differs from the true value by 1.)  Note that, as in Fig. 1, both
upper and lower middle and the right panels are statistically equal.  They can be only
distinguished by looking at the colorbars.

Finally, Fig. 3 details an area near the boundary of the scene showing nadir (upper
middle and right) and zenith (lower middle and right panels) radiances calculated with
109 photons.  In addition, we plotted optical (upper left) and geometrical thicknesses
(lower left panel).  Both images show a 1.2x1.2 km area at the lowest left corner of the
original image.  We see that the largest MC errors happen at the very edge of the image
where the total optical thickness is 0.1-0.2 and cloud geometrical thickness is about 0.5
km.  Hence the extinction of these pixels is very small and very few interactions occur
there.  As a result, a contribution to the radiances from these pixels is rare and the
variance is huge.  If the radiance for these pixels has a significant value, we can calculate
the contribution from the first order of scattering analytically (or numerically) and the rest
by MC.  This will definitely lead to the reduction of variance.  For more details, see E.
Kasyanov’s abstract (this volume).
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Fig. 1 Zenith radiances (Id) calculated with 108 and 109 photons, respectively, and their relative errors.  Solar zenith angle

is 600.  The leftmost column shows 2D fields of zenith radiances.  The middle column shows horizontal cuts along the row
#101.  The rightmost column shows relative errors in %.
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Fig. 2 The same as in Fig. 1 but for nadir radiances (Iu).  The leftmost column shows 2D fields of nadir radiances.  The

middle column shows relative errors in % while the rightmost column shows absolute errors.
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Fig. 3 Fragments of zenith and nadir radiances calculated with 109 photons.  Solar zenith angle is 600.  The leftmost

column shows optical (upper panel) and geometrical (lower panel) thicknesses of a cloud field.  The middle column shows
zenith and nadir radiances as fragments from those plotted in Figs. 1 and 2, respectively.   The rightmost column shows
relative errors in %.
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